Neutron Source Developments

AAC 2012

F. X. Gallmeier

Erik Iverson, Wei Lu, Ceris Hamilton, Irina Popova

Outline

- SNS Moderator Performance:
 - Present measurements/predictions
- Aluminum Proton Beam Window:
 - Impact on target operations
 - Impact on neutron performance
- Next IRP:
 - Goals: improvements of brightness of coupled moderator, reduced waste, and concept for disposal
 - Neutronics design calculations
 - Engineering design

Outline (cont)

- Advanced moderator:
 - Experiments and preliminary results
 - Simulation capabilities
 - Future activities

Moderator Neutron Performance

- Performance measurements performed on demand
 No complete set of data from all beam lines available
- Performance measurement are complicated by in-beam optical components
 - Measurements done at guide exits or instrument sample locations
 - > Need to simulate beamline to obtain an un-skewed comparison
- We believe simulations predict within 10-20%

TU Moderator: Decoupled & poisoned hydrogen

- Top upstream moderator (hydrogen)
- Within 20% after correcting for IRP light water cooling instead of heavy water cooling

BU Moderator: Decoupled Ambient Water

Measured at VULCAN sample position

BD Moderator: Coupled Hydrogen

- After moderator repair of the hydrogen feedline extending it into moderator vessel
- Measured at FNPB: indication of significant ortho fraction

for the U.S. Department of Energy

Neutron Performance Sensitivity due to off-center Proton Beam

- Target Imaging System calibrated during AP time of 29 June 2010
 - Involves running pencil beams as well as nominal beams at different locations across target face to calibrate light output per proton
- We simultaneously measured neutron spectra and background levels on several scattering instruments in order to characterize the sensitivity to proton beam configuration
 - TU: SNAP (03), POWGEN (11a), TOPAZ (12)
 - BU: VULCAN (07), SEQUOIA (17)
 - TD: CNCS (05)
 - Covered every viewed moderator face except for BD

Pencil Beam Vertical Scan:

- Moving away from moderator penalizes beamlines more than moving toward the moderator:
 - Loss about 20% per cm away
 - Gain about 5% per cm toward
- Effect seems to be similar for beamlines sharing moderator
- Effect is stronger for upstream moderators
 - Could not include BD moderator
- Figure shows vertical shift toward relevant moderator

Pencil Beam Horizontal Scan:

- Horizontal shift shows smaller variation
 - ~10% for 50 mm offset; much greater than would be possible within the OE or on the basis of target lifetime constraints
- Horizontal scan performed only with pencil beam
- In addition to the variation being small, most were not statistically significant
 - Runs were mostly 2 minutes each

SNS Proton Beam Effects on Neutronics

We continue with measurements as part of instrument support as opportunities arise.

10 Managed by UT-Battelle for the U.S. Department of Energy

Spare Inner Reflector Plug

Spare IRP Assembly

- Upper IRP
 - Passively cooled shielding
- Intermediate IRP
 - Actively cooled shielding
- Lower IRP
 - Actively cooled shielding
 - Integrated moderators
 - Be reflector
 - Moderator beam tubes
 - Target opening

- Physics design is identical to the first IRP
- Shielding is improved and water cooling routing is simplified
- Extensive Delays have been encountered with Spare IRP procurement – 6061-T6 EB welding of moderator and lower IRP components
- Delivery expected summer, 2012

Next generation Inner Reflector Plug (IRP)

- SNS IRP has limited life (30,000 MW-hours as designed)
 - Current operation has been ~12000 MW-hours
 - At 1 MW operation and 5,000 hours per year, that is ~4 years from now
 - Procurement takes ~2 years, and awarding a contract may take 0.5 years
- Less than 2 years to have a design, drawing package, and ready to go out for bids

Next generation IRP: Design Goals

- Increase lifetime from 6 MW-years to 8 MW-years
 - Change to Cd poison and increase decouplers and liners
- Increase performance of upstream moderators by 10%
- Increase performance of downstream moderators by 30%
 - Requires an ortho to para convertor, which also improves resolution of Basis, CNCS, etc.
- Improved waste handling
 - Current IRP will not fit in TN-RAM cask without being cut into pieces
 - Create a two-piece IRP composed of a inner-inner plug containing the moderators and the beryllium (lifetime limiting components) and the steel shielding as outer-inner component with increased lifetime of 40-50 MW-years.

Next IRP: constraints

- Viewport locations and sizes of moderators fixed by beamline locations
- Instruments utilizing neutrons from a particular viewport must agree on change of moderator characteristics

Vational Laborato

Managed by UT-Battelle 14

Next gen. IRP: Decoupled Moderators

- Veined or checker-board poison did not provide improvements over the poison plate design.
- Decoupled moderators are optimized to intensity at cost of increased pulse width or vice versa by the moderator thickness: instruments are happy with present compromises or have conflicting wishes.
- >No change in decoupled moderator geometries
- The only change will be the replacement of the gadolinium poison material by a cadmium
- Gains of 5-15% in neutron brightness is expected by the poison material change including a lifetime extension of 1 year.

Next gen IRP: Coupled H2 moderators

- The thickness was chosen to 5 cm to make the brightness insensitive to changes in the ortho/ para ratio.
- With the commitment to implement a catalyst driving the H2 to the para state, we can gain intensity by increasing the thickness to 10-12 cm.

Add graph intensity vs thickness for differnet ortho/pra ratiosn

Next IRP: Coupled H2 moderators

Present design

Next design (idealized)

17 Managed by UT-Battelle for the U.S. Department of Energy

Next IRP: Coupled H2 moderators

Moderator Brightness Spectrums Comprehensive Comparison

Next IRP: Coupled H2 moderators

Brightness at 1 meV reduced about 1.5%/mm

Coupled H2 moderator engineering

Engineering reality:

- Curved walls and rounded edges to reduce stress
- Supply lines connect at top/ bottom
- Flow diverters may be needed
- Thermal expansion calls for positioning tolerances
- Fabrication constraints

Iterations between neutronics and engineering analyses coming up

20 Managed by UT-Battelle for the U.S. Department of Energy

Proton Beam Window (PBW) Assembly

- Separate high vacuum of accelerator from helium environment of core vessel
- Allow proton beam of up to 2MW to pass through window
- Shield surrounding assemblies from particles from scatter and spallation occurring in window
- Houses halo thermocouples and target imaging system hardware for beam diagnostics

21 Managed by UT-Battelle for the U.S. Department of Energy

Current SNS PBW Design

- Inconel 718 window between 316 SS shield blocks
- Approximate lifetime of 7500 hours at 1 MW

Motivation for Aluminum PBW

- Increased PBW lifetime estimated at 15000 hrs @ 1MW
 - Rough estimate based on SINQ target 4 safety hull
- Increased neutronic performance estimated 3-5% increase compared to current Inconel 718 window
- Decreased heating in PBW and shield blocks estimated 33% and 45%, respectively, of heating for current window
- Higher thermal conductivity and lower energy deposition and stiffness lead to lower thermal stress levels

Engineering details will be given by Peter Rosenblad

Directional moderators

- More neutrons in the direction of the beamline (or guide)
- Active program with Lens
- ILL effort on diamond nanoparticles may be combined with crystals
 - Working on collaboration to perform joint experiment at Lens

Directional Moderator Experiments:

- Neutron Emission at different angles with regard to surface normal of moderator stack
- 30% gain at 0.7 degree tilt from PE/Si stacks of 0.7/2mm layer thicknesses
- 35% gain at 0.7 degree tilt from PE/ void gap stacks of 0.7/2mm layer thicknesses

Directional Moderator Experiments:

Valley 1-ply Si

Valley 8-ply Si

Gains due to Bragg diffraction effects are demonstrated at 0 degree moderator tilt but not at 0.7 degree tilt with the silicon vein structures

Managed by UT-Battelle

Directional Moderator: Simulations

1.5 PE+Si PE+void 1.4 1.3 1.2 gain factor 1.1 1 0.9 0.8 0.7 92 87 88 89 90 91 93 angle [deg]

Gain over Bulk PE 300K Moderator at 23 meV

Part of the Directional Moderator LDRD is the creation of tools (MCNPX) for simulating such effects:

- Neutron refraction and reflection at material interfaces
- Single crystal scattering effects

gain factor

Directional Moderator: Future Activities

- Conduct another experiment campaign with cold moderators
- Perform simulation of experiment with new toolset
- Publish

